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Chapter 5 Water Quality and Watershed Implications  
 
5.1 Overview 
 
This chapter describes the water quality evaluations conducted as a part of the R3 Study and 
outlines the potential implications of these evaluations on the San Diego Creek Watershed. 
Specific information includes: 
 

• A discussion of two approaches to the evaluation of water quality 
• A summary of the study methods relating to water quality  
• Development of “before and after” assessments of water quality to evaluate the 

effectiveness of ET technology and public education 
• Detailed discussions of the evaluation approaches and findings based on these approaches 
• A discussion of the implications of the findings for water quality in the San Diego Creek 

Watershed, focusing on TMDL constituents   
 

More detailed information is provided in Appendices E1 and E2.  
 
5.2 Introduction 
 
Two independent reviews of water quality measurements were conducted as a part of this study.  
The initial review was conducted by SCCWRP as a part of its participation in the R3 Study and 
is included in its entirety as Appendix E1.  This review used parametric statistical techniques      
(t-test; ANOVA), which provide a good descriptive review of the study data, but are generally 
considered to have less statistical power for detecting differences in data than other statistical 
tests.  In general, because of the variability of the data and limitations in sample quantities, this 
review concluded that there was virtually no difference in either the concentration or “flux” 
(concentration times flow) of pollutants over time or between study treatments.   
 
A subsequent statistical overview by Geosyntec Consultants was commissioned by IRWD to 
review alternative and possibly more “robust” data analysis techniques that might identify 
differences in study data not uncovered during the initial review.  This work, which included the 
review of only a portion of the data set, focused on additional descriptive techniques (time series 
plots; box plots; probability distributions) and the use of non-parametric statistical techniques 
(rank-sum test; K-W).  For some of the parameters reviewed, these techniques suggest that 
differences in measured water quality did occur across time and between study treatments.  The 
entire Geosyntec report is provided in Appendix E2. 
 
As noted above, both of the completed statistical reviews of the study data are included in the 
Appendices of this report.  The remainder of this chapter of the report discusses the key findings 
of each review. 
 
5.3 SCCWRP Water Quality Review 
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This section describes the SCCWRP evaluation approach, sampling and laboratory analysis, data 
analysis, and interpretations of the results.  Watershed implications are also discussed. 
 
5.3.1  Evaluation Approach 
 
A before-after, control- impact (BACI) design was used to evaluate the effectiveness of both the 
sprinkler technology and public education.  Each neighborhood was sampled every other week 
between December 2000 and June 2001.  In June 2001, homes in one of the neighborhoods were 
outfitted with the ET controllers.  Since homeowners with the retrofitted ET controllers were 
simultaneously being educated, a well-defined public education campaign was also begun with 
these homeowners.  To ascertain the difference between education and ET technology, 
homeowners in a second neighborhood were targeted with an identical public education 
campaign, but without effect of the ET retrofit technology.  There was no education or 
technology intervention in the remaining three neighborhoods, which served as control neighbor- 
hoods to document the effect of no treatment.  Sampling at the five neighborhoods continued 
every other week from June 2001 to June 2002.  
 
5.3.2 Sampling and Laboratory Analysis 
 
Each neighborhood was hydrologically self-contained and drained to a single underground pipe. 
At each of these five locations, samples were collected for flow and water quality.  Stage (water 
depth) and velocity were recorded at 5-minute intervals using an ultrasonic height sensor 
mounted at the pipe invert and a velocity sensor mounted on the floor of the pipe.  Flow was 
calculated as the product of velocity and wetted cross-sectional area as defined by the stage and 
pipe circumference.  Despite the relatively continuous measurement of flow, many of the flow 
measurements were excluded due to faulty readings.  Synoptic flow and water quality 
measurements were only available for two sites over the course of the entire study (i.e. before 
and after intervention), including the ET controller + education and education only sites.  Flow 
measurements at the time of water quality sampling for the three control sites were considered 
faulty and discarded.   
 
Grab samples for water quality were collected just downstream of the flow sensors in the early 
morning using peristaltic pumps and pre-cleaned Teflon tubing.  Samples were placed in 
individual pre-cleaned jars, placed on ice, and transported to the laboratory within one hour.  
Each sample was analyzed for 19 target analytes, five microbiological parameters, and four 
toxicity endpoints (Table 5-1).  Target analytes included trace metals, nutrients, and 
organophosphorus (OP) pesticides.  Microbiological parameters included fecal indicator bacteria 
and bacteriophage.  Toxicity was evaluated using two marine species, the purple sea urchin 
Strongylocentrotus purpuratus and the mysid Americamysis bahia.  All of the laboratory 
methodologies followed standard protocols developed by the USEPA or Standard Methods. 
 

5.3.3 Data Analysis 

Data analysis consisted of five steps:  1) comparison of water quality among the five 
neighborhoods prior to intervention; 2) comparison of water quality concentrations over time by 
neighborhood; 3) comparison of water quality concentrations before and after intervention by 
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treatment type; 4) comparison of pollutant flux before and after intervention by treatment type; 
and 5) correlation of toxicity measures with potential toxicants in dry weather runoff. 
 
Comparison of water quality concentrations among the five neighborhoods prior to intervention 
was conducted to assess if there were inherent differences among treatment sites for each  
 
Table 5-1   
Reporting Level and Method for Target Parameters 
 
  Reporting Level Method 
   
Metals (ug/L)   
Antimony 0.2 EPA 200.8 
Arsenic 1.5 EPA 200.8 
Barium 0.2 EPA 200.8 
Cadmium 0.2 EPA 200.8 
Chromium 0.3 EPA 200.8 
Cobalt 0.1 EPA 200.8 
Copper 1.5 EPA 200.8 
Lead 0.3 EPA 200.8 
Nickel 0.2 EPA 200.8 
Selenium 5.0 EPA 200.8 
Silver 0.4 EPA 200.8 
Zinc 5.0 EPA 200.8 
   
Nutrients (mg/L)   
Ammonia as N 5.0 EPA 350.1 
Nitrate/Nitrite as N 5.0 EPA 353.2 
Total Kjeldahl Nitrogen 10.0 EPA 351.2 
Ortho-Phosphate as P 0.5 EPA 365.1 
Total Phosphorus 1.0 EPA 365.4 
   
OP Pesticides (ng/L)   
Chlorpyrifos 20.0 IonTrap GCMS 
Diazinon 20.0 IonTrap GCMS 
 
Microbiology   
Enterococcus (MPN/100 mL) 2 SM9230B 
Fecal Coliform (MPN/100 mL) 2 SM9221B 
Total Coliform (MPN/100 mL) 2 SM9221B 
MS2 Phage (PFU/100 mL) 2 EPA 1602 
Somatic Phage (PFU/100 mL) 2 EPA 1602 

Toxicity (% effluent) 
Sea Urching Fertilization EC50 NA EPA 1995 
Sea Urching Fertilization NOEC NA EPA 1995 
Mysid EC50 NA EPA 1993 
Mysid NOEC NA EPA 1993 
 
Note: ug/L = micrograms per liter; MPN/100 mL=most probable 
number per 100 milliliters; PFU/100mL=plaque forming units per 
100 milliliters; mg/L=milligrams per liter; ng/L=nanograms per liter. 
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constituent.  This analysis was conducted using ANOVA using Tukey’s post hoc test for 
identifying the significantly different neighborhoods.  All data was tested for normality and 
homogeneous variance prior to testing.  Only the microbiological data was determined to be non-
normally distributed, so these results were log transformed prior to data analysis. 
 
Comparison of water quality concentrations over time was accomplished by creating temporal 
plots of monthly mean concentration.  Comparisons of water quality concentration before and 
after intervention by treatment type were accomplished using a standard t-test of the mean 
concentration before versus mean concentration after intervention.  The mean concentrations for 
ET controller + education, education only, and ET controller + education – education only for 
each sampling event were normalized by the grand mean of the control sites for the same 
sampling event.   
 
Pollutant flux estimates were calculated by the product of the concentration and volume at the 
time of sampling and then normalized to the area of the sampled neighborhood.  Pollutant flux 
before and after treatment was compared somewhat differently since the lack of flow data at the 
control sites did not permit an estimate of flux for these neighborhoods.  Mean pollutant flux 
before and after intervention was compared using standard t-tests at the ET controller + 
education and education only neighborhoods without normalization to control values.   
 

Correlation of toxicity with toxicant concentrations was accomplished using a Pearson product 
moment correlation.  These correlations are inferential only and do not presume resulting 
correlations automatically identify the responsible toxicants.  In order to help identify potential 
causative toxic agents, concentrations of the correlated constituents were compared to 
concentrations known to induce toxicity in the respective test organisms. 
 

5.3.4 Evaluation Results 

There were significant differences in water quality among sites prior to intervention (Appendix 
E1, Table WQ3).  Site 1004, the control site, had the greatest mean concentrations for 15 of the 
24 constituents evaluated prior to the ET controller intervention.  In particular, all of the mean 
nutrient concentrations were greater at Site 1004 than the other sites.  On the other hand, Sites 
1001 and 1002 generally had the lowest average concentrations prior to the ET controller 
intervention.  Cumulatively, these sites had the lowest mean concentrations for 17 of the 24 
constituents evaluated.  Site 1002 also had the least toxicity, on average, of all five sites.  Finally, 
Site 1003 had an intermediate status.  Mean concentrations of enterococcus and fecal coliforms 
at this site were greater than any other site (fecal coliforms significantly greater than Sites 1001 
and 1002), but the mean concentrations of five trace metals (chromium, copper, cobalt, nickel, 
selenium) were lowest at this site. 
 
Water quality concentrations and toxicity were highly variable over time during the study period.  
Temporal plots of concentrations and toxicity for each site demonstrated that there was no 
seasonal trend and no overall trend with time.  There were, however, occasional spikes in 
concentrations for many constituents that appeared to fall into one of two categories.  The first  
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category was recurring spikes in concentration that were unpredictable in timing and location.  
The second category of concentration spike was single or infrequent peaks.  Occasionally these 
spikes would occur across multiple sites, without commensurate changes in concentration at the 
treatment sites (1001 or 1005).  More often, infrequent spikes were isolated to a single site.  For 
example, concentrations of chlorpyrifos climbed to over 10,000 ng/L in July 2001, but averaged 
near 50 ng/L the remainder of the year at site 1005.  Similarly, concentrations of ammonia and 
total phosphorus spiked 10 and 25-fold prior to June 2001 at the control site (1004) with less 
variability and overall lower concentrations the remainder of the study. 
 
There were few significant differences that resulted from the intervention of education, ET 
controller + education, or ET controller + education – education only, relative to control sites 
(Table 5-2).  Only six of the 24 constituents evaluated showed a significant difference between 
pre and post- intervention concentrations after normalizing to mean control values.  These 
significant differences were a net increase in concentrations of ammonia, nitrate/nitrite, total 
phosphorus, chlorpyrifos, diazinon, and fecal coliforms.  These statistical analyses were the 
result of one of two circumstances.  In the first circumstance, there were individual large spikes 
in concentration at treatment sites, but not at control sites following intervention.  Therefore, the 
net difference in concentrations between controls and treatments increased following the 
intervention.  In these cases, removal of the outlier samples resulted in no significant difference 
among treatment effects relative to controls before intervention compared to after intervention.  
In the second circumstance, there were large spikes in concentrations at control site(s) prior to 
the intervention that later subsided, while treatment site concentrations and variability remained 
steady.  Therefore, the difference between treatments and controls changed following 
interventions, although it was not a result of the education or technology.   
 
Although there were no significant differences in pollutant flux as a result of the intervention, 
significant differences were noted in pollutant flux among sites prior to intervention.  Site 1001, 
the ET controller + education site, had the greatest mean flux for 22 of the 24 constituents 
evaluated prior to the ET controller intervention.  The mean flux for 20 of these 22 constituents 
was significantly greater at Site 1001 than the mean flux at Site 1005 (t-test, p<0.05).  Site 1005 
had greater mean fluxes only for MS2 phage and ammonia.  The differences among the fluxes 
prior to (and after) intervention were the result of two factors: greater flow and, at times, greater 
concentrations at Site 1001 compared to Site 1005.  Mean dry weather flow at the time of water 
quality sampling was nearly three times greater at Site 1001 than Site 1005. 
 
Toxicity was inconsistently found at all five of the sampling sites, and there was no change in 
toxicity as a result of the intervention (Table 5-3). The two species tested did not respond 
similarly either among sites, among treatments, or over time.  Correlation of toxicity with 
constituent concentrations yielded few significant relationships for either species (Table 5-3).  
Mysid toxicity was correlated with diazinon and several trace metals, but the strongest 
relationship was with diazinon concentration.  Moreover, the concentrations of diazinon were 
well above the levels known to cause adverse effects in mysid, while trace metals were not.  Sea 
urchin fertilization toxicity was only correlated with concentrations of zinc.  The concentrations 
of zinc were well above the level known to induce adverse effects in this species.   
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Table 5-2 
Significance of ANOVA Results for the Effect of ET Controller + Education, Education Alone, and the 
Difference Between ET Controller + Education and Education Alone Relative to Control Concentrations.  
(No data indicates p > 0.05) 
 

 
Effect of ET 
Controller 

+ Education 

Effect of 
Education Alone 

Difference Between 
ET Controller + Education 

and Education Alone 
    
Metals    
Antimony    
Arsenic    
Barium    
Cadmium    
Chromium    
Cobalt    
Copper    
Lead    
Nickel    
Selenium    
Silver    
Zinc    
    
Nutrients    
Ammonia as N 0.03 0.02  
Nitrate/Nitrite as N 0.02   
Total Kjeldahl Nitrogen    
Ortho-Phosphate as P    
Total Phosphorus  0.03  
    
OP Pesticides    
Chlorpyrifos <0.01 <0.01 <0.01 
Diazinon  <0.01  
    
Microbiology    
Enterococcus    
Fecal Coliform 0.04   
Total Coliform     
MS2 Phage    
Somatic Phage     
     
Toxicity    
Fertilization EC50    
Fertilization NOEC    
Mysid EC50    
Mysid NOEC    
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Table 5-3   
Correlation Coefficients (and p value) of Constituent Concentrations with Toxicity Endpoints (No Observed 
Effect Concentration, NOEC and Median Effect Concentration, EC50) in Dry Weather Discharges from 
Residential Neighborhoods in Orange County, CA.  (No data indicates p > 0.05) 
 

 Sea Urchin Fertilization 
NOEC 

Mysid Survival 
NOEC 

Sea Urchin Fertilization 
EC50 

Mysid Survival 
EC50 

Antimony  -0.273 (0.009)   
Arsenic  -0.3396 (0.001)   
Barium     
Cadmium     
Chromium  -0.244 (0.021)  -0.219 (0.044) 
Cobalt  -0.330 (0.002)  -0.279 (0.010) 
Copper     
Lead  -0.215 (0.042)   
Nickel     
Silver  -0.260 (0.013)  -0.229 (0.035) 
Zinc -0.277 (0.005)  -0.274 (0.006)  
Chlorpyrifos     
Diazinon  -0.426 (0.001)  -0.468 (0.001) 
Ammonia     
 
5.3.5 Interpretation of Results 
 
The evaluation was unable to find large, significant reductions in concentration or pollutant flux 
as a result of education and/or ET controller retrofit technology.  This may indicate that the 
technology and/or education are inefficient for improvements in water quality.  Equally as 
important, however, was the absence of meaningful increases in concentrations.  Of the small 
number of concentrations that showed significant increases, most could be explained by highly 
variable spikes in concentrations reminiscent of isolated entries to the storm drain system, as 
opposed to ongoing chronic inputs or the effects of best management practices evaluated in this 
study.  
 
If significant changes did occur, the evaluation design may not have detected these changes due 
to two factors.  First, the variability in concentrations within and between sites is naturally high 
and the evaluation simply collected too few samples.  After taking into account the variability 
and relative differences in mean concentrations, zinc was used as an example constituent to 
determine what sample sizes would be required to detect meaningful differences.  Assuming that 
the sampling yielded the true mean and variance structure that actually existed at the five sites, 
power analysis indicated that a minimum sample size of no less than five-fold would have been 
required to detect the differences observed in zinc concentrations during this study.   
 
The second factor that could have hindered the ability to detect meaningful differences in water 
quality is that the technology and education treatments were applied at the spatial scale of 
individual homes, while the evaluation design sampled at the neighborhood scale.  This problem 
was exacerbated because only a fraction (approximately one-third) of the homes within the 
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neighborhoods sampled had the technological or educational treatments.  Therefore, the 
treatments were effectively diluted, decreasing the ability to detect differences in water quality. 
 
5.3.6  Watershed Implications  
 
It appears that residential dry weather flows measured in the R3 Study may contribute significant 
proportions of some constituents to overall watershed discharges.  The study sites were located 
within the San Diego Creek watershed, the largest tributary to Newport Bay.  The Orange 
County Public Facilities and Resources Department (OCPFRD) publishes monitoring data on 
San Diego Creek to provide environmental managers the information they need to properly 
manage the Bay (OCPFRD 2002).  The dry weather monitoring data was compiled at the mouth 
of San Diego Creek from OCPFRD during 2001-2002 and compared the concentrations to our 
results from residential neighborhoods (Table 5-4).  Mean concentrations of chlorpyrifos, 
diazinon, copper and zinc were much higher in upstream residential neighborhoods than 
concentrations measured at the mouth of San Diego Creek.  These residential dry weather 
contributions were amplified by the fact that the San Diego Creek watershed is primarily 
composed of residential land uses.  In contrast, concentrations of selenium, arsenic, and total 
phosphorus in the residential dry weather discharges were much lower than the cumulative dry 
weather discharges from San Diego Creek, indicating that residential areas may not be the 
primary source of these constituents. 
 
Table 5-4 
Comparison of Mean Concentrations (95% Confidence Intervals) in Residential Dry Weather Discharges 
from this Study Compared to Concentrations in Dry Weather Discharges from San Diego Creek at Campus 
Drive During 2001-2002.  (Data from OCPFRD) 
 

 San Diego Creek  Residential 

Parameter Mean (95% CI)  Mean (95% CI) 

Nitrate 5.16 (0.72)  4.76 (1.96) 
Phosphate 1.98 (0.07)  1.16 (0.20) 
         
Diazinon 0.13 (0.07)  1.52 (0.52) 

Chlorpyrifos 0.05 (0.01)  0.35 (0.44) 
         
Copper 11.59 (2.83)  23.59 (5.65) 
Arsenic 6.58 (0.40)  2.68 (0.26) 
Selenium 21.22 (2.65)  2.46 (0.03) 
Zinc 22.08 (2.75)  60.09 (8.26) 
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5.4 Geosyntec Water Quality Review 
 
This section presents examples of alternative approaches to data analysis, data analysis methods, 
example results, and watershed implications. 
   
5.4.1 Examples of Alternative Approaches to Data Analysis   
 
These example analyses focus on TMDL constituents: nutrients (total nitrogen [TN] and total 
phosphorus [TP]), metals (copper, lead, zinc, cadmium), pesticides, and pathogens (fecal 
coliform).  The analyses also focus on dry weather flows, as reduction of these flows was a 
major objective of the R3 Study.   
 
5.4.2 Data Analysis Methods  
 
Exploratory Data Analysis 
Visual inspection of data and exploration of factors that could potentially influence data (e.g. 
seasonal trends, rain events) 

1. Divide data into pre and post- intervention groups. 
2. Construct time series plots to visually inspect data and visually examine for seasonal 

trends.  Overlay storm event markers to identify any relation to rainfall volume or 
antecedent dry period (ADP).  

3. Investigate normality or log normality of data sets.  Select appropriate statistical tests. 
4. Construct probability plots for pre- intervention and post- intervention periods.  
5. Prepare quantile plots. 
6. Prepare side-by-side box plots. 
7. Calculate descriptive statistics 

 
Hypothesis Testing 
Test data for skewness, normality, and statistically significant differences.  Skewness and 
normality tests are only needed if parametric approaches are conducted.  Use of non-parametric 
approaches is recommended for consistency because normality will not be met in all cases.  
Nonetheless, examples are provided to show that several of the data sets do not come from a 
normal distribution.  

1. Skewness hypothesis test for symmetry. 
2. Shipiro-Wilkes normality test.  
3. Mann-Whitney rank-sum test. 
4. For the data sets that have greater than 50 percent censored data (i.e., data only known to 

be less than the detection limit), hypothesis tests for differences in proportions. 
 
5.4.3 Example Results 

The first step in the data analysis was to construct individual time-series plots for each site to 
identify seasonal periodicity, step-trends, and monotonic trends.  Plotting each site individually 
reveals more information than plotting all sites together.  Also, by overlaying storm events, the 
role of rainfall volumes and the ADP may be more apparent and may indicate whether additional 
analyses are warranted (e.g., correlating ADP with concentration).  Figure 5-1 is an example 
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time-series plot with storm event markers overlain for TP for Site 1001.  As shown on the figure, 
the pre- intervention period had much more rainfall, which likely added to the variability in 
runoff concentrations and fluxes.  However, it is apparent that the winter and spring 
concentrations appear to be lower and less variable during the post- intervention period.  The 
irrigation controllers may have had an effect on the runoff concentrations by reducing the 
amount of irrigation during moister weather conditions (i.e., high soil moisture).  A similar effect 
for TN is shown on Figure 5-2.  Additional time-series plots are provided in Appendix E2.   
 
Figure 5-1 
Example Time -series Plot of Total Phosphorus with Storm Event Markers. 
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Figure 5-2 
Example Time -series Plot of Total Nitrogen with Storm Event Markers. 
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5.4.3.1 Comparison of Water Quality Data Prior to Intervention 
 
To visually investigate whether the test sites have similar runoff characteristics, probability plots 
were constructed.  Figure 5-3 is an example of a probability plot for TP for all of the test sites.  
The figure shows that all of the sites have a similar distribution except for Site 1004.   
 
Figure 5-3 
Example Probability Plot of Total Phosphorus for All Sites Prior to Intervention. 
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The next step in the data analysis was to calculate parametric and non-parametric descriptive 
statistics.  Table 5-5 is an example table of descriptive statistics for TN for all sites for both the 
pre- and post-intervention periods.  (Additional descriptive statistics are included in Appendix 
E2).  Table 5-5 includes the number of data points (n), the detection percent (%>MDL/RL), the 
mean, median, 25 percent trimmed mean, min, max, 25th percentile, 75th percentile, standard 
deviation, interquartile range (IQR), and the coefficient of skewness (gs).  Also included in the 
table are critical skewness coefficients (gcr), which are readily available in statistics texts. If the 
coefficients of skewness are less than these critical values, then the data is symmetric.  It should 
be noted that the measures of central tendency (mean and median) and variability (standard 
deviation) of the sites during the pre- intervention period are quite different, indicating the data 
arises from different distribut ions.  The median values are consistently smaller than the mean (in 
some cases substantially smaller), demonstrating the influence of the outliers on the measure of 
central tendency.  Only three pre- intervention data sets are symmetric, and none of the post-
intervention data sets are.  Failure to pass the symmetry test indicates the data is not normal.  
However, passing the symmetry test does not indicate the data is normal; this requires a 
normality test.  The symmetry test, which is easier to conduct than normality tests, serves as an 
initial screen for normality to reduce the number of data sets needing further investigation.   
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Table 5-5  
Example Table of Descriptive Statistics for Total Nitrogen for Each Site for Pre- and Post-intervention. 
 

  1001 1002 1003 1004 1005 
Parameter Statistic Pre Post Pre Post Pre Post Pre Post Pre Post 
TN 
(calculated) n 23 25 23 25 23 25 23 25 23 25 

(mg-N/L) 
% > 
MDL/RL 100% 80% 98% 90% 98% 96% 98% 96% 100% 98% 

 Mean 4.24 3.09 5.31 3.44 3.66 4.42 48.00 10.18 6.89 7.74 
 Median 3.84 2.27 3.95 2.55 2.66 2.50 19.01 5.57 5.06 4.36 

 
Trimmed 
mean 3.94 2.40 4.53 2.76 2.93 3.01 33.11 6.47 5.08 4.42 

 min 2.30 0.30 1.50 0.78 1.46 0.45 3.28 0.74 2.48 1.07 
 max 6.76 12.99 13.83 11.40 12.12 19.91 141.06 40.80 20.41 67.12 

 
25th 
percentile 3.20 1.79 2.27 2.10 2.11 2.04 9.05 2.71 3.52 3.47 

 
75th 
percentile 5.68 3.13 8.02 4.36 4.81 5.17 94.79 19.18 7.07 5.62 

 St Dev 1.41 2.67 3.56 2.51 2.48 4.39 49.17 10.73 5.29 12.85 
 IQR 2.48 1.34 5.75 2.26 2.70 3.13 85.74 16.47 3.55 2.15 
 Skewness, gs 0.55 2.82 0.84 1.87 2.13 2.27 0.74 1.37 1.88 4.46 
 gcr 0.96 0.92 0.96 0.92 0.94 0.92 0.96 0.92 0.94 0.92 

 
Symmetric 
(gs < gcr)? Y N Y N N N Y N N N 

 
 
The non-parametric equivalent to the ANOVA test is the K-W test, which tests for a difference 
between the medians of independent data groups.  The K-W test will also test whether the 
datasets are derived from the same distribution.   
 
Comparison of the mean ranks in Table 5-6 provides an indication of whether the data groups are 
derived from the same distribution.  A p values < 0.05 indicates that two or more of the data 
groups have different distributions.  Examination of the mean ranks in Table 5-6 shows that Sites 
1001, 1002, and 1005 have somewhat similar mean ranks, and Sites 1003 and 1004 have 
somewhat different mean ranks.  This suggests that Sites 1003 and 1004 have a different 
distribution than the other sites.  Thus, the K-W test was performed on just Sites 1001, 1002, and 
1005.  These results are shown in Table 5-7.  The p-value is now greater than 0.05, so the 
distributions of the TN data are not significantly different.  Based on this analysis, Site 1002 was 
determined to be the only control site for comparison of TN data.  Furthermore, it is clear that 
Site 1004 should not be considered as a control site for TN, and Site 1003 should be used with 
caution.   
 



 
 

  5-13 

 
Table 5-6  
Example of Kruskal-Wallis Test Results for Total Nitrogen at the Test Sites Prior to Intervention.  
 
Test:  Kruskal-Wallis ANOVA     
Comparison:  Total Nitrogen: 1001, 1002, 1003, 1004, 1005 

Performed by:  GeoSyntec Consultants     
n  115     
Total Nitrogen  n Rank sum Mean rank 
1001  23 1128.0 49.04  
1002  23 1162.0 50.52  
1003  23 774.0 33.65  
1004  23 2150.0 93.48  
1005  23 1456.0 63.30  
     
Kruskal-Wallis statistic  41.71    
p  <0.0001  (chisqr approximation)  

 
Table 5-7  
Example of Kruskal-Wallis Test Results for Total Nitrogen at Sites 1001, 1002, and 1005 Prior to 
Intervention. 
 
Test:  Kruskal-Wallis ANOVA   
Comparison: Total Nitrogen: 1001, 1002, 1005 

Performed by: 
GeoSyntec 
Consultants   

n  69    
Total Nitrogen  n Rank sum Mean rank 
1001  23 710.0 30.87 
1002  23 761.0 33.09 
1005  23 944.0 41.04 
    
Kruskal-Wallis statistic  3.27   
p  0.1948  (chisqr approximation) 
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5.4.3.2 Comparison of Water Quality Data Before and After Intervention 
 
Side-by-side box plots and probability plot comparisons of pre- intervention and post-intervention 
were constructed to identify any apparent differences in the central tendency and concentration 
distributions between the two data sets. Figure 5-4 shows side-by-side box plots of total nitrogen 
at all of the test sites.  Site 1004 was omitted due to its high variability.  The figure shows that 
Site 1001 has a distinct decrease in TN while the other sites do not.  However, other sites do 
show a decreasing trend in median concentration and inter-quartile ranges.  
 
Figure 5-4  
Side-by-side Box Plots of Pre- versus Post-Intervention for Total Nitrogen at All Sites.   
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Figure 5-5 is a probability plot of TN for Site 1001 before and after intervention.  (Additional 
probability plot comparisons are included in Appendix E2.) This figure shows a distinct 
reduction in TN at the site.  However, since the data is from different time-periods, this 
difference could be related to temporal variability. 
 
Figure 5-5  
Example Probability Plot of  Pre- versus Post-intervention for Total Nitrogen at Site 1001.   
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To evaluate if temporal variability caused by the different monitoring periods has anything to do 
with the difference in TN concentrations, the probability plots of the pre- and post- intervention 
period for Site 1001 were plotted with those for Site 1002 and Site 1005 (as these were 
determined to be the only valid control sites).  These comparison plots are shown on 
Figure 5-6 and Figure 5-7.  For pre- intervention, the distribution of Site 1001 more closely 
follows the distribution of Site 1005 than that of Site 1002, and for post- intervention the opposite 
is true.  This indicates that the year-to-year variability alone cannot explain the reduction in TN 
at Site 1001. 
 
Figure 5-6  
Example Probability Plot for Total Nitrogen of Site 1001 versus Site 1002 for the Pre- and Post-Intervention 
Periods.   
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Figure 5-7  
Example Probability Plot for Total Nitrogen of Site 1001 versus Site 1005 for the Pre- and Post-Intervention 
Periods. 
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The Mann-Whitney test (rank-sum) was used to determine if there is a statistical difference in the 
median values of two independent data sets (by rejecting the hypothesis that they are the same).  
Tables 5-8 through 5-10 show the output of the Mann-Whitney tests on Sites 1001, 1002, and 
1005, respectively.  The tables show a statistically significant difference (p<0.05) in the medians 
between the pre- versus post- intervention TN data at both Sites 1001 and 1002, but not at Site 
1005.  Furthermore, the difference in the medians at Site 1001 is at a higher level of confidence 
(more statistically significant) than the difference at Site 1002 (i.e., greater than 99 percent 
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significant compared to about 96 percent significant).  The magnitudes of these differences 
(Hodges-Lehmann estimator) are about 1.5 and 1.3 milligrams of nitrogen per liter (mg-N/L) 
for Sites 1001 and 1002, respectively.  These tests indicate that the difference in the TN 
medians at Site 1001 from pre- intervention to post- intervention cannot be explained by the year-
to-year variation alone (e.g., the intervention appears to have had an effect).  It also indicates that 
the public education applied to Site 1005 did not appear to make a significant difference.   
 
Table 5-8  
Example Mann-Whitney Test for Difference in Medians for Total Nitrogen at Site 1001 from Pre- Versus 
Post-intervention. 
 
Test :  Mann-Whitney test     
Alternative hypothesis   1001: Pre versus Post     

Performed by:   GeoSyntec Consultants     
n  48     

1001  n Rank sum 
Mean 
rank U 

Pre  23 736.0 32.00 115.0 
Post  25 440.0 17.60 460.0 
     
Difference between 
medians  1.497    
95.2% CI  0.883 to +?   (normal approximation) 

     
Mann-Whitney U statistic  115    
1-tailed p  0.0002  (normal approximation)  

 
 
Table 5-9  
Example Mann-Whitney Test for Difference in Medians for Total Nitrogen at Site 1002 from Pre- Versus 
Post-Intervention. 
 

Test:   Mann-Whitney test     
Alternative hypothesis:   1002: Pre versus Post     

Performed by:   GeoSyntec Consultants     
n  48     
1002  n Rank sum Mean rank U 
Pre  23 651.0 28.30 200.0 
Post  25 525.0 21.00 375.0 
     
Difference between medians  1.289    
95.2% CI  0.065 to +?   (normal approximation) 
     
Mann-Whitney U statistic  200    
1-tailed p  0.0355  (normal approximation)  
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Table 5-10  
Example Mann-Whitney Test for Difference in Medians for Total Nitrogen at Site 1005 from Pre- Versus 
Post-intervention. 

 
Test:   Mann-Whitney test     
Alternative hypothesis:   1005: Pre versus Post     

Performed by:   GeoSyntec Consultants     
n  48     
1005  n Rank sum Mean rank U 
Pre  23 610.0 26.52 241.0 
Post  25 566.0 22.64 334.0 
     
Difference between medians  0.530    
95.2% CI  -0.446 to +?   (normal approximation) 

     
Mann-Whitney U statistic  241    
1-tailed p  0.1686  (normal approximation, corrected for ties) 

 
 
5.4.3.3 Comparison of Constituent Fluxes Before and After Intervention 
 
The statistical procedures applied to the concentrations examples above were also applied to the 
constituent fluxes (mass loadings).  For completeness, an abridged example analysis is provided 
here.  Figure 5-8 includes side-by-side box plots and probability plots of total nitrogen flux data 
milligrams per acre per day (mg/acre/day) for Site 1001 at pre- and post- intervention.  There 
appears to be a significant decrease in the median, as well as an overall reduction in the 
distribution of values.    
 
Figure 5-8  
Side-by-side Box Plot and Probability Plots of Pre- Versus Post-Intervention for Total Nitrogen Flues at    
Site 1001.  
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Table 5-11 shows the results of the Mann-Whitney test (rank-sum) for the total nitrogen flux at 
Site 1001.  The medians from pre- to post- intervention are statistically significantly different at 
the 95 percent confidence level (p<0.05).  The magnitude of the difference (the Hodges-
Lehmann estimator) is approximately 530 mg/acre/day, indicating a relatively large reduction in 
total nitrogen loads from the neighborhood.  However, as discussed below, the extent to which 
the ET controllers contributed to this reduction is unclear. 
 
The nitrogen fluxes used in this analysis were computed as the product of the measured 
concentration and the average daily flow.  Therefore, the reduction in TN flux could be due to a 
reduction in flow, a reduction in concentration, or a combination of both.  Analyses presented 
earlier showed a statistically significant reduction in median TN concentration at Site 1001 
between the pre- and post- intervention periods.  Similarly, analyses discussed elsewhere in this  
report indicate that there was a statistically significant reduction in flow at Site 1001 between the 
pre- to post- intervention periods; however, it was cautioned that the pre- and post- intervention 
periods are not comparable due to seasonal differences in the data collection period.  Thus, 
observed reductions in flow in 1001 could be influenced by seasonal factors. Therefore, the 
extent to which the ET controllers contributed to a reduction in flow is unknown.  Consequently, 
reductions in TN flux could be attributed to a combination of TN reduction, flow reduction, 
and/or seasonal factors.    
 
Table 5-11  
Example Mann-Whitney Test for Difference in Medians for Total Nitrogen Flux at Site 1001 from Pre- 
Versus Post-intervention. 

 
Test :  Mann-Whitney test     
Alternative hypothesis   1001 flux (mg/acre/day): Pre vs. Post   

Performed by:   GeoSyntec Consultants     
n  36     
1001_flux (mg/acre/day)  n Rank sum Mean rank U 
Pre  14 320.0 22.86 93.0 
Post  22 346.0 15.73 215.0 
     
Difference between medians  529.389    
95.1% CI  115.985 to +?   (normal approximation) 
     
Mann-Whitney U statistic  93    
1-tailed p  0.0239  (normal approximation)  

 
The above results suggest that it would be valuable to complete a more robust statistical 
evaluation of the data because some significant management implications could be determined. 
 
5.4.4  Watershed Implications  
 
The water quality evaluation results were examined in the context of existing TMDLs in the San 
Diego Watershed.  Most of the existing TMDLs are reviewed below, and possible inferences and 
implications of the R3 Study data for TMDL compliance are discussed.  The sediment and 
organophosphorus pesticide TMDLs were not reviewed because sediment data was not collected 
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(the vast majority of sediments are transported by storm flows) and because Schiff and 
Tiefenthaler (SCCWRP, 2003) have previously conducted an extensive analysis of the OP 
pesticide data. 
 
5.4.4.1 Comparisons with Regulatory Requirements 
 
Mean dry-season concentrations for nutrients, toxics, metals, and pathogens at the R3 Study Sites 
were compared with regulatory objectives including TMDL’s, California Toxics Rule (CTR) 
criteria, and Basin Plan objectives in Tables 5-12 and 5-13.  These comparisons are strictly 
descriptive and provide a rough sense of dry-season residential water quality in comparison to 
regional water quality objectives.  This comparison shows substantial variability between 
neighborhoods and among constituents.    

 
Table 5-12  
Comparison of Dry Season Concentrations of Nutrients and Toxics at R3 Study Sites with Regulatory  
Objectives 

 
Parameter/Location Objective  Site 1001 Site 1002 Site 1003 Site 1004 Site 1005 
 
TIN (San Diego Creek  
Reach 1 /  Reach 2) 

 

 
13 mg/L / 5 mg/L 
(RWQCB-TMDL) 

 
4.079 mg/L 

 
0.464 mg/L 

 
2.18 mg/L 

 
18.16 mg/L 

 
4 mg/L 

  Percent of Samples above Toxics TMDL 
  Site 1001 Site 1002 Site 1003 Site 1004 Site 1005 

Chlorpyriphos -Acute  
(San Diego Creek Reach 1) 
 

18 ug/L 
(RWQCB-TMDL) 

36.59  N/A N/A 22.76  43.9  

Chlorpyriphos - Chronic-  
(San Diego Creek Reach 1) 
 

12.6 ug/L 
(RWQCB-TMDL) 

46.34  N/A N/A 26.02  49.59  

Diazinon - Acute-  
(San Diego Creek Reach 1) 
 

72 ug/L 
(RWQCB-TMDL) 

70.73 N/A N/A 69.11 73.17 

Diazinon - Chronic-  
(San Diego Creek Reach 1) 

45 ug/L 
(RWQCB-TMDL) 

74.80 N/A N/A 75.61 77.24 
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Table 5-13 
Comparison of Dry Season Concentrations of Metals and Pathogens at R3 Study Sites with Regulatory 
Objectives 

 
 Percent of Samples above CTR Criteria 

Parameter Objective  Site 1001 Site 1002 Site 1003 Site 1004 Site 1005 
Copper -Acute  13 ug/L  

(CTR Criteria for 
Metal Toxicity*) 

43.59 43.59 46.14 46.15 71.79 

Copper -
Chronic  

9 ug/L 
(CTR Criteria for 
Metal Toxicity*) 

74.36 56.41 76.92 74.36 87.18 

Lead -Acute 65 ug/L  
(CTR Criteria for 
Metal Toxicity*) 

0 0 0 0 0 

Lead -Chronic 2.5 ug/L 
(CTR Criteria for 
Metal Toxicity*) 

10.26 28.21 10.26 12.82 28.21 

Zinc -Acute 120 ug/L 
(CTR Criteria for 
Metal Toxicity*) 

0 7.69 5.13 7.69 15.38 

Zinc -Chronic 120 ug/L 
(CTR Criteria for 
Metal Toxicity*) 

0 7.69 5.13 7.69 15.38 

 Median Dry Season Fecal Coliform  

Parameter Objective  Site 1001 Site 1002 Site 1003 Site 1004 Site 1005 
Fecal Coliform 200 MPN/100 mL 

(RWQCB Basin 
Plan) 

1400 MPN/100 
mL 

3000  
MPN/100 mL 

5000  
MPN/100 mL 

13000  
MPN/100 mL 

65000  
MPN/100 mL 

 
5.4.4.2 Nitrogen 
 
Nitrogen Water Quality Objectives and TMDLs – The Basin Plan water quality objectives for 
nitrogen in San Diego Creek are 13 milligrams per liter (mg/L) Total Inorganic Nitrogen (TIN) 
in Reach 1, and 5 mg/L TIN in Reach 2 (RWQCB, 1995).  Reach 1 extends from Newport Bay 
to Jeffrey Road, and Reach 2 extends from Jeffrey Road to the headwaters.  There is no numeric 
standard for nitrogen in Upper Newport Bay in the Basin Plan. 
 
The nitrogen TMDL for Upper Newport Bay is based on the general goal of reducing nutrient 
loads to Newport Bay by 50 percent, to levels observed in the early 1970s (USEPA, 1998b).  The 
nitrogen TMDL sets phase- in limits on TN loads to Newport Bay (see Table 5-14).  Separate 
loads are established for the dry and wet seasons (dry season is from April 1 to September 30).  
In addition, the winter load is exclusive of storm flows with an average daily flow greater than 
50 cubic feet per second (cfs) in San Diego Creek at Campus Drive.   
 
There is no TMDL for nitrogen loads in San Diego Creek, Reach 1 because it was reasoned that 
attainment of the 50 percent reduction in nitrogen loads to Newport Bay would result in 
compliance with the Basin Plan in-stream water quality standard for Reach 1 (13 mg/L TIN).  
However, for Reach 2, it was determined that the average in-stream nitrogen concentrations 
would likely remain close to or above the Basin Plan in-stream water quality standard (5 mg/L 
TIN), even with attainment of the Newport Bay TMDLs.  Therefore a TMDL of 14 lbs/day TN 
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was established for Reach 2 (see Table 5-14) and is applicable for all flows exclusive of storm 
flows greater than an average daily flow of 25 cfs in San Diego Creek at Culver Drive.   
 
Table 5-14  
Summary of Nutrient TMDLs for Upper Newport Bay and San Diego Creek 

 
TMDL Dec 31, 2002 Dec 31, 2007 Dec 31, 2012 
Newport Bay Watershed,  
TN – Summer load (4/1 to 9/30) 

200,097 lbs 153,861 lbs  

Newport Bay Watershed,  
TN – Winter load (10/1 to 3/31; non-storm) 

  144,364 lbs 

Newport Bay Watershed,  
Total Phosphorus – Annual Load 

86,912 lbs 62,080 lbs  

San Diego Creek, Reach 2, daily load   14 lbs/day 
Urban Runoff Allocation for the Newport 
Bay Watershed  
 Summer load 
 Winter load 

 
22,963 

 
11,481 

 
 
 
38,283 

 
 
Study Data Comparison with Nitrogen Water Quality Objective – The Basin Plan water quality 
objectives are expressed in terms of TIN, which is comprised of nitrate/nitrite nitrogen and 
ammonia.  By far the majority of the TIN in San Diego Creek is comprised of nitrate/nitrite 
nitrogen, as measured ammonia concentrations were typically quite low with a majority below 
the detection limit.  For this reason, only the nitrate/nitrate concentration data is compared to the 
Basin Plan objectives in this report.   
 
Table 5-15 shows the mean and median nitrate/nitrite concentrations measured in the five study 
sites.  The mean and median nitrate/nitrite concentration of all sites except 1004 was below the 
Reach 2 Basin Plan objective of 5 mg/L TIN.  As discussed previously, Site 1004 may not be a 
representative control site because the underlying distribution of pre-intervention nitrogen data 
appears to be different from the other sites.  Similar arguments may also be true for Site 1003.  
With the exception of Site 1004, mean nitrate/nitrite concentrations suggest that, on average, 
residential runoff from these sites does not contribute to the exceedance of Basin Plan standards 
for TIN in receiving waters in San Diego Creek, Reach 1 and 2.  The Reach 2 water quality 
objective was occasionally exceeded in all sites, except for the post intervention conditions in 
1001 and 1002.   
 
Table 5-15  
Mean and Median Nitrate/Nitrite Concentration (mg/l) by Site (all data). 
 

 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
n 23 25 23 25 24 25 23 25 24 25 
Mean 2.56 1.47 2.57 1.07 2.13 1.71 36.50 6.61 2.61 4.13 
Median 2.32 1.38 1.56 0.93 1.68 0.94 16.88 2.29 2.45 1.48 
n>5 mg/L 1 0 4 0 1 2 18 8 2 1 
n>13 mgL 0 0 0 0 0 0 12 4 0 1 
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The mean and median nitrate/nitrate concentrations in Sites 1004 and 1005 exhibit exceedances 
of the 5 mg/L standard during pre- and/or post intervention conditions.  Site 1004, in particular, 
had high levels of measured nitrate/nitrite concentrations, especially during the pre- intervention 
period.  A number of these high readings exceed the Reach 1 water quality objective of 13 mg/L 
TIN.  The results from Site 1004 are not consistent with those from the other four study sites, and 
the source of the high readings is unknown.  Localized conditions involving excessive fertilizer 
usage by a few users could possibly be a factor in these elevated readings.  In particular, the R3 
Study mentions an unknown connection to a neighboring watershed, which could explain the 
source of elevated nutrient levels. 
 
The Mann-Whitney (rank-sum) test was performed to compare the statistical difference between 
median concentrations during pre- and post- intervention periods.  The median nitrate/nitrite in 
the post- intervention period was lower at all sites, and the difference was statistically significant 
at the 0.05 confidence level.  As the control stations exhibited this trend, the data (i.e. entire data 
sets with unequal seasonal coverage) cannot be used to ascertain if the structural and educational 
BMPs were effective in reducing the runoff concentrations of nitrate/nitrite.   
 
Clearly another factor is contributing to reduced concentrations in the post-intervention period.  
One possibility that was investigated is differences in seasons, year-to-year variability, and 
sampling times of the pre- and post- intervention data. Table 5-16 presents mean and median 
concentrations for comparable seasons and sampling times.  The table shows that there are still 
noticeable reductions in all of the median concentrations, except Site 1005.  Applying the Mann-
Whitney (rank-sum) test to the data, it was found that statistically significant differences between 
median nitrate/nitrite concentrations in the pre- and post-intervention periods occurred only at 
Sites 1001 and 1004, as compared to all sites when all data is considered.  These results indicate 
that seasonal effects are present in the data and should be considered in the study evaluation.  It 
may be inferred from these results that there were significant reductions in the nitrate/nitrite 
concentration in the intervention site during the wet season that may, in part, be attributable to 
the structural BMPs.  It is unknown whether similar reductions would occur in dry weather 
runoff during the dry season because such data was not collected during the pre- intervention 
period.  
 
Table 5-16  
Mean and Median Nitrate/Nitrite Concentration (mg/l) by Site for Comparable Seasons and Sampling Times1 

 
 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
n 18 14 18 14 19 14 18 14 19 14 
Mean 2.38 1.43 1.95 0.95 2.17 1.66 26.24 6.57 2.24 6.27 
Median 2.22 1.48 1.16 0.96 1.50 1.02 8.94 2.06 2.03 1.96 
n>5 mg/L 0 0 2 0 1 1 13 4 1 1 
n>13 mg/L 0 0 0 0 0 0 7 3 0 1 

1 – evening samples were deleted from the pre-intervention data.  The post-intervention data include only those data 
collected in months identical to the pre-intervention period. 
 
Study Data Comparison with Nitrogen TMDLs - The nitrogen TMDL is expressed in terms of 
total nitrogen TN loads.  TN concentrations were calculated from the monitoring data as the sum 
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of the nitrate/nitrite nitrogen and total Kjeldahl nitrogen (TKN) nitrogen. Table 5-17 shows the 
mean and median TN concentrations measured in the five study sites.  The mean and median TN 
concentration in dry weather runoff are generally in the range of 2 to 5 mg/L, with the exception 
of Site 1004 where substantially higher concentrations were measured.  The rank sum tests 
indicated that median TN concentrations were significantly lower (in a statistical sense) in the 
post-intervention period in Site 1001 (structural BMPs, see Table 5-8), and at Site 1002 (control, 
see Table 5-9). Based on the probability plots in Appendix E2, Site 1004 is expected to as well.  
However, Sites 1003 and 1005 did not show statistically significant reductions.  These results did 
not change when only subsets of the data were used to consider possible effects stemming from 
the sampling time and sampling months.   
 
Table 5-17  
Mean and Median TN Concentrati on (mg/l) by Site 

 
 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
All Data           
 n 23 25 23 25 23 25 23 25 23 25 
 Mean 4.24 3.09 5.31 3.44 3.66 4.42 48.00 10.18 6.89 7.74 
 Median 3.84 2.27 3.95 2.55 2.66 2.50 19.01 5.57 5.06 4.36 
Subsets1           
 n 18 14 18 14 18 14 18 14 18 14 
 Mean 4.18 2.78 4.51 2.63 3.71 3.71 33.99 8.91 6.98 9.91 
 Median 3.62 2.02 3.22 2.21 2.51 2.47 12.14 3.74 4.17 3.96 

1 – Data subsets with comparable sampling time and seasons.  Evening samples were deleted from the pre-
intervention data.  The post-intervention data include only those data collected in months identical to the pre-
intervention period. 

 
TN flux estimates were calculated for Sites 1001 and 1005 (Table 5-18).  The flow measure-
ments at Sites 1002 to1004 are not reliable. Therefore, flux estimates were not calculated for 
these sites.  Flux estimates were calculated as the product of the constituent concentration and 
the average daily flow occurring on the day of the sample collection.  The flux estimates were 
found to be quite variable as they depend on both flow and concentration measurements.  Table 
5-18 shows that median TN flux estimates decreased from the pre- to post- intervention periods 
for both sites.  Mann-Whitney (rank sum) tests show the reductions to be statistically significant 
(Table 5-11).  Because comparable data is not available for the control sites, it is not possible to 
infer whether these reductions are influenced by the ET controllers in the intervention site 
(1001).  Also, as previously discussed, the reduction in TN flux may be attributable to a 
reduction in flow, a reduction in concentration, seasonal factors, or a combination of these. 
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Table 5-18  
Mean and Median TN Flux (mg -N/acre/day) by Site 

 
 1001 1005 
 Pre Post Pre Post 
All data     
 n 14 22 10 21 
 Mean 1476 1667 2104 6537 
 Median 1164 530 1568 1177 
Subset1     
 n 12 14 10* 8 
 Mean 1384 587 2104 1716 
 Median 902 497 1568 960 
1 – Data subsets with comparable sampling time and seasons.   
Evening samples were deleted from the pre -intervention data.   
The post-intervention data include only those data collected in  
months identical to the pre-intervention period. 
* – Same as the all data case 

 
Although the flux estimates in Table 5-18 are limited in number, duration, and location, they can 
be used to speculate about the magnitude of the urban area contribution of TN loads to Newport 
Bay and the potential reduction in loads from structural and nonstructural BMPs.  Based on the 
limited flux data, the annual TN load to Newport Bay in dry weather runoff from urban areas in 
the San Diego Creek Watershed is estimated to range between 37,000 to 50,000 lbs per year 
under existing land-use conditions (see Table 5-19).   This is for the most part below the 2012 
urban runoff allocation of 49,764 lbs.  The annual TN load is estimated to increase to 50,000-
67,000 lbs per year under build-out conditions.   
 
According to the 2001 report on the nutrient TMDL (OCPFRD, 2001), the average daily TN load 
in San Diego Creek at Campus Drive was 540 lbs/day between July 2000 and June 2001.  This 
converts to an annual load of about 197,000 lbs, which is below the 2007 TMDL (note: San 
Diego Creek is the majority but not sole contributor of TN loads to Newport Bay).  Estimates in 
Table 5-19 suggest that dry weather runoff from urban areas account for about 20 to 25 percent 
of the annual TN in the San Diego Creek Watershed.  If it is assumed that flux reductions 
observed in the post intervention period are attributable to the structural and nonstructural BMPs, 
and if similar interventions could hypothetically be implemented on a watershed-wide basis, then 
the potential reduction in annual dry weather TN loads is estimated to range between 12,500-
20,000 lbs.  This would represent a reduction of about 6-10 percent of the current TN loads and 
about 30-40 percent of the estimated current dry weather urban loads.  These estimates are based 
on few data collected in a limited area and should therefore be considered preliminary in nature. 
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Table 5-19  
Estimated Annual TN Loads in Dry Weather Runoff from Urban Areas in the San Diego Creek Watershed  

 
 TN flux  

(mg-N/acre/d) 
Annual TN Load to 
Newport Bay (lbs) 
Existing land-use1 

Annual TN Load to 
Newport Bay (lbs) 
Built-out land-use2 

Pre-intervention 
conditions 

1160 – 1560 37,300 – 50,500 50,000 – 67,000 

Post-intervention 
conditions 

530 – 1180 17,000 – 38,000 23,000 – 51,000 

Potential 
reduction 

 ~12,500 – 20,000 ~16,000 – 27,000 

1 –Used 40000 acres or about 53% of the San Diego Creek Watershed area (IRWD, 2003).  For 
comparison, urban land use in 1999 use was estimated at 35,500 acres of the watershed area at 
Campus Drive (Tetra -Tech, 2000).  
2 – Used 53500 acres or about 71% of the San Diego Creek Watershed area (IRWD, 2003).   
 
The following conclusion can be made based on the analyses above: 
• Average and median nitrate/nitrite concentrations in dry weather runoff are below the Reach 

2 water quality objective (5 mg/L), for most but not all study sites. 
• Occasional exceedance of the Reach 2 water quality objective occurred in all study sites. 
• The majority of measured nitrate/nitrite concentrations at Site 1004 during the pre-

intervention period were greater than the Reach 2 water quality objective of 5 mg/L.  The 
data is not consistent with those from the other sites.  The cause is unknown, but could 
possibly be related to the unknown connection to the neighboring nursery discussed in the R3 
report.   

• Sampling periods (months) and sampling time (morning versus evening) were found  to affect 
the statistical significance of differences between pre- and post- intervention median 
nitrate/nitrate concentration in some of the sites.  The sampling period and sampling time did 
not affect the statistical significance of differences between pre- and post-intervention 
median TN concentrations.   

• Median TN fluxes at Sites 1001 and 1005 were statistically smaller in the post- intervention 
period.  The extent to which the structural and nonstructural BMPs contributed to these 
reductions cannot be determined due to the lack of reliable flow data in the control sites.   

• Preliminary estimates of annual TN loads to Newport Bay in dry weather runoff from urban 
sources range between 37,000 to 50,000 lbs per year, or about 20 to 25 percent of the current 
TN loads.   

• The potential reductions in annual dry weather TN loads due to implementation of BMPs on 
a watershed basis is estimated to range between 12,500-20,000 pounds per year.  This would 
represent a reduction of about 6-10 percent of the current TN loads and 30-40 percent of the 
urban loads. 

 
 
5.4.4.3 Phosphorus  
 
The majority of the annual TP load in the San Diego Creek Watershed occurs in the wet season, 
and has been correlated with sediment loads generated by storm events (USEPA, 1998b).  This 
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correlation suggests that a majority of phosphorus occurs in particulate form attached to 
sediments.  The main sources of the TP are in Peters Canyon Wash and San Diego Creek above 
Culver Drive (USEPA, 1998b).   
 
Phosphorus TMDL – There is no numeric objective for phosphorus for San Diego Creek in the 
Basin Plan.  Because measured TP and sediment loads are correlated, it was determined in the 
TMDL that a 50 percent reduction in TP loads would be achieved through compliance with the 
sediment TMDL (USEPA, 1998a).  Accordingly, the TMDL for TP was based on a 50 percent 
reduction of average annual load estimated at 124,160 lbs (USEPA, 1998b).  The TMDLs are 
applicable for all flow conditions.  The target compliance date was set for December 31, 2007.   
 
The annual TP load allocation for urban areas is 4102 lbs by 2002, reducing to 2960 lbs by 2007.  
According to the USEPA (1998b), the TP is allocated in the same proportion as sediments.  The 
annual urban area (stabilized vs. construction) sediment allocation for the Newport Bay 
Watershed is 50 tons distributed over 95.3 square miles (see Table 5 in USEPA, 1998a).  This is 
a very small allocation over a large area.  By contrast, the annual construction allocation is 6500 
tons distributed over the assumed 3.0 square miles under construction in any one year.  Using the 
same proportions of sediment load allocations, the TP load rate based on the 2007 urban 
allocation is 2960 lbs/95.3 square miles = 0.0485 lbs/acre/yr.  If the construction and urban 
allocations are combined, the TP load rate based on the combined 2007 urban and construction 
allocations is (2960+12810) lbs/(95.3+3.0) square miles = 0.251 lbs/acre/yr.   
 
Study Data Comparison with TMDLs  – Similar to the nitrogen TMDL, the phosphorus TMDL 
is expressed in terms of total annual TP loads.  Table 5-20 shows the mean and median TP 
concentrations measured in the five study sites.  The mean and median TP concentrations in dry 
weather runoff are below 1.2 mg/L in all sites, with the exception of Site 1004, where 
substant ially higher concentrations were measured.  Comparison of the pre- and post-
intervention median TP concentrations in all data (Table 5-20) reveals an increase in the median 
TP concentration during the post- intervention period for all sites except the intervention Site 
1001 and Site 1004.  In contrast, when subsets of the data with similar seasons and sampling 
times are considered (Table 5-20), there is a decrease in the median TP concentration at all sites 
except 1005.  This indicates that there are seasona l influences in the data, which presumably are 
related to rainfall.  Unfortunately, no data is available to permit comparison of pre- and post-
intervention concentrations for dry weather flows during the dry season. 
 
Table 5-20  Mean and Median TP Concentration (mg/l) by Site 
 
 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
All Data           
 n 23 25 23 25 24 25 23 24 24 25 
 Mean 0.73 0.60 0.92 0.84 0.98 1.21 3.33 1.50 1.01 1.19 
 Median 0.60 0.51 0.77 0.82 0.62 0.67 2.54 1.05 0.73 0.85 
Subsets1           
 n 18 14 18 14 19 14 18 13 19 14 
 Mean 0.78 0.47 0.91 0.67 1.13 0.57 2.62 1.33 0.93 1.24 
 Median 0.61 0.41 0.73 0.56 0.75 0.58 1.82 1.07 0.75 0.83 
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1 – Data subsets with comparable sampling time and seasons.  Evening samples were deleted from the pre-
intervention data.  The post-intervention data include only those data collected in months identical to the pre-
intervention period. 

 
TP flux estimates were calculated for Sites 1001 and 1005 using the approach discussed in the 
nitrogen section above.  Table 5-21 shows that median TP flux estimates decrease from the pre- 
to post- intervention periods at the intervention site (1001), but not in the education only site 
(1005).  Mean fluxes increased at both sites. However, as discussed earlier, the mean values are 
strongly influenced by outliers and do not provide a good measure of central tendency for the 
data.  Application of the Mann-Whitney (rank sum) test shows the reduction in median TP flux 
at Site 1001 is statistically significant.  This suggests that the structural BMPs had a positive 
influence in reducing the TP fluxes. However, because comparable data is not available for the 
control sites, it is not possible to ascertain the extent to which the ET controllers contributed to 
these reductions.  Also, as discussed previously, reductions in flux could be influenced by 
several factors: reduction in concentration, reduction in flow, and/or seasonal variability.   
 
Table 5-21  
Mean and Median TP Flux (mg-P/acre/day) by Site (all data) 

 
 
 
 
 
 

 
Similar to the previous analyses of TN loads, the TP flux estimates in Table 5-21 can be used to 
speculate about the magnitude of the urban area contribution of TP loads to Newport Bay and the 
potential reduction in loads from structural BMPs.  Based on the limited flux data, the annual TP 
load to Newport Bay in dry weather runoff from urban areas in the Newport Bay Watershed is 
estimated to range between about 5,000 to 11,000 lbs per year (see Table 5-22), assuming a total 
urban area of 95.3 square miles obtained from Table 5 of the sediment TMDL (USEPA, 1998a).  
These estimated annual TP loads are greater than the urban allocation (for both dry and wet 
weather) and are less than the combined urban and construction allocations (Table 5-22).  
However, these estimates are based on dry weather data only, and it is expected that a major 
portion of the TP loads will occur in runoff from winter storms.  Therefore, actual annual TP 
loads would be expected to be greater.  If it is hypothesized that flux reductions observed at the 
intervention site (1001) could be realized over the entire watershed, then the potential reduction 
in annual dry weather TP loads from urban areas is estimated at 2700 lbs.  As stated previously, 
these estimates are based on few data collected in a limited area and should therefore be 
considered preliminary in nature. 
 
 
 
 
 
 
 

 1001 1005 
 Pre Post Pre Post 
All data     
 n 14 22 10 21 
 Mean 265 370 473 1327 
 Median 164 109 219 219 
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Table 5-22  
Estimated Annual TP Loads in Dry Weather Runoff from Urban Areas in the San Diego Creek Watershed  

 
 TP flux  

(mg-P/acre/d) 
Annual TP Load 
Rate to Newport Bay 
(lbs/acre/year)1 

Annual TP Load to 
Newport Bay 
(lbs/year) 

2007 Urban 
Area Allocation 
for Newport Bay 

 0.0485 2960 

2007 Combined 
Urban and 
Construction 
Area Allocation 
for Newport Bay 

 0.251 15770 

Pre-intervention 
conditions 
(median fluxes) 

164 – 219 0.132 – 0.176 8049 – 10748 

Post-
intervention 
conditions 
(median fluxes) 

109 – 219 0.088 – 0.176 5350 – 10748 

Potential 
reduction 

  2700 

1 - urban area is 95.3 square miles and the construction area is 3.0 square miles based on Table 5 in USEPA,1998a 
 
5.4.4.4 Metals 
 
Metals TMDLs – The USEPA (June 2002) determined that TMDLs are required for dissolved 
copper, lead, and zinc in San Diego Creek, Upper Newport Bay, and Lower Newport Bay, and 
that TMDLs are required for cadmium in San Diego Creek and the Upper Newport Bay.  The 
TMDLs for San Diego Creek are expressed as concentration limits, based on the California 
Toxic Rule (CTR) criteria at various hardness values that are associated with different flow 
regimes (Table 5-23).  The flow regimes are based on 19 years of flow measurements in San 
Diego Creek at Campus Drive.  The concentration-based TMDLs apply to all freshwater 
discharges to San Diego Creek, including discharges from agricultural, urban, and residential 
lands, and storm flow discharges.  The applicable flow regime at any location in the entire 
watershed is determined on the basis of discharge at Campus Drive.  
 
Table 5-23 
Summary of Dissolved Metal TMDLs for San Diego Creek 
 

Base flow 
(0–20 cfs) 
hardness @ 
400 mg/L 

Small flows  
(21-181 cfs) 
hardness @ 
322 mg/L 

Medium flows 
(182-814 cfs) 
hardness @ 
236 mg/L 

Large flows  
(>814 cfs) 
hardness @ 
197 mg/L 

 
 
Dissolved 
Metal 
(?g/l) Acute Chronic Acute Chronic Acute Chronic Acute 
Cadmium 19.1 6.2 15.1 5.3 10.8 4.2 8.9 

Copper 50 29.3 40 24.3 30.2 18.7 25.5 

Lead 281 10.9 224 8.8 162 6.3 134 

Zinc 379 382 316 318 243 244 208 
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Metals Sources – The USEPA (June 2002) conducted a source analysis as part of the TMDL 
preparation.  Surface runoff is the largest contributor of metals loads in the San Diego Creek 
watershed, which includes natural and man made sources (USEPA, June 2002).  Much of the 
metals loads are from natural sources.  The estimated anthropogenic contributions are metal 
specific and range from about 33 percent for zinc to 63 percent for cadmium (USEPA, June 
2002).  A primary anthropogenic source of heavy metals is runoff from urban roads, which 
contributes to sources of cadmium (tire wear), copper (brakes, tires), lead (brakes, tires, fuels and 
oils), and zinc (tires, brakes, galvanized metals).  Use of copper sulfate by nurseries may also be 
a minor source of copper loads.  Other copper and zinc uses in building materials (roofing and 
roof drains) may be another source. 
 
The USEPA found that metal inputs were heavily influenced by rainfall and stream flow rates.  
Monitoring results were reported to be highly variable due to different rainfall amounts and 
flows during each water year.  The USEPA estimated that base flows account for 25 percent of 
the total metal loadings, with the remainder from low, medium and large flows caused by storms. 
 
The USEPA’s preliminary analyses suggest that: 1) a primary source of metals in dry weather 
runoff in the study watershed is from roads (i.e. wash off of metals in driveways, parking lots, 
streets, gutters, etc.); 2) the runoff concentrations will be influenced by rainfall which result in 
wash off of accumulated metals; and 3) the concentrations can be variable depending on the 
amount of rainfall.   
 
Study Data Comparison with Base Flow TMDLs  – The metals TMDLs for base flow 
conditions are based on meeting the CTR criteria at a total hardness of 400 mg/L.  The CTR 
criteria express maximum allowable concentrations in receiving waters for acute (short term) and 
chronic (4-day) exposure periods.  The acute and chronic criteria are expressed as values that 
cannot be exceeded more that once in three years.  Although the criteria are applicable in the 
receiving waters and not in the urban runoff per se (i.e. the measured dry weather discharge), 
exceedance of the CTR in the urban discharge would suggest a potential for the discharge to 
contribute to an exceedance in the receiving waters. 
 
Table 5-24 shows the mean and median heavy metal concentrations in the five study sites.    
With the exception of mean copper concentrations in some of the sites, all mean and median 
concentrations were below the chronic and acute CTR criteria.  Copper, lead, and zinc concen-
trations occasionally exceeded the chronic CTR criteria, and copper and zinc concentrations 
occasionally exceeded the acute criteria.  These exceedances suggest that the dry weather runoff 
can potentially contribute to an exceedance in the receiving waters.  However, if intervention is 
determined to be effective in reducing runoff flows, then the BMPs would help to reduce impacts 
of these potential exceedances by allowing for greater dilution with the in-stream flows.   
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Table 5-24  
Mean and Median Metal Concentrations (mg/L) by Site (all data) 

 
 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
Cadmium           
 n 23 25 23 25 24 25 23 25 24 25 
 Mean 0.26 0.14 0.47 0.44 0.27 0.17 0.64 0.22 0.21 0.29 
 Median 0.27 0.10 0.24 0.10 0.10 0.10 0.36 0.10 0.10 0.10 
 n>6.2 ? g/l 0 0 0 0 0 0 0 0 0 0 
 n>19.1 ? g/l 0 0 0 0 0 0 0 0 0 0 
Copper           
 n 23 25 23 25 24 25 23 25 24 25 
 Mean 13.5 16.9 27.3 30.3 11.5 26.6 21.8 17.7 32.1 30.8 
 Median 11.5 11.4 10.9 14.0 11.1 14.3 12.7 11.4 12.3 20.4 
 n>29.3 ? g/l 2 2  3 7 0 2 5 4 3 5 
 n>50 ? g/l 0 1 3 3 0 2 2 3 3 2 
Lead           
 n 23 25 23 25 24 25 23 25 24 25 
 Mean 0.8 1.6 5.9 4.7 0.8 1.6 3.5 1.5 1.0 3.2 
 Median 0.6 0.6 0.9 1.2 0.6 0.8 0.7 0.7 0.7 1.3 
 n>10.9 ? g/l 2 1  2 3 0 0 2 0 0 1 
 n>281 ? g/l 0 0 0 0 0 0 0 0 0 0 
Zinc           
 n 23 25 23 25 24 25 23 25 24 25 
 Mean 58.7 37.2 115.2 86.3 56.3 56.8 83.6 40.9 74.0 75.0 
 Median 56.0 50.2 53.4 57.2 50.7 53.9 50.8 43.8 52.4 54.5 
 n>382 ? g/l 0 0 1 2 0 0 1 0 0 0 
 n>379 ? g/l 0 0 1 2 0 0 1 0 0 0 
 
Dry weather metals monitoring information in the Central Irvine Channel, the immediate 
receiving water of the study watersheds, was unavailable.  OCPFRD dry weather monitoring 
data is available in San Diego Creek at Campus Drive, which is quite a way downstream from 
the study sites.  Data collected between December 2001 and June 2002 (Table 5-25) shows that 
average dry weather concentrations at Campus Drive are well below mean and median 
concentrations measured in dry weather runoff from the study watershed.  Similar comparisons 
cannot be made for lead and cadmium because the method detection limits in the OCPFRD data 
are greater than those in the R3 data.  None of the OCPFRD dry weather data exceeded the 
chronic or acute criteria.   
 
Table 5-25 
Summary of OCPFRD Dry Weather Monitoring Data of San Diego Creek at Campus Drive (12/01 to 6/02) 
 
 Cadmium Copper Lead Zinc 
Sample number 24 24 24 24 
Range All < 1 ?g/ l <2 – 16 ?g/ l <2-2.4 ?g/ l <10-16 
Mean  7.4 ?g/ l most <2 ?g/ l most <10 
Median-  6.8??g/ l   
 
These comparisons suggest that metal loads in dry weather runoff from the study (urban) 
watersheds could be a contributing factor to dry weather copper and zinc loads measured at 
Campus Drive.  These dry weather discharges do not result in non-compliance of the base flow 
metal TMDL at Campus (based on the reviewed data only).  It is unknown if the elevated 
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concentrations measured in the dry weather urban runoff result in exceedance of the CTR criteria 
in the immediate receiving waters.   If flow reductions observed in the intervention watershed are 
attributable to the ET controllers, then these controllers would help to reduce impacts from any 
potential exceedances of the TMDL because the discharges would be subject to greater dilution 
by the in-stream flows.   
 
5.4.4.5 Pathogens  
 
Pathogens are agents or organisms that can cause diseases or illnesses, such as bacteria and 
viruses.  Fecal coliform bacteria are typically used as an indicator organism because direct 
monitoring of human pathogens is generally not practical.  Fecal coliform are a group of bacteria 
that are present in large numbers in the feces and intestinal tracts of humans and animals, and can 
enter water bodies from human and animal waste.  The presence of fecal coliform bacteria 
implies the water body is potentially contaminated with human and/or animal waste, suggesting 
the potential presence of associated pathogenic organisms.   
 
Fecal Col iform TMDL – The RWQCB has adopted phased TMDL criteria for pathogens, with 
the initial focus on additional monitoring and assessment to address areas of uncertainty.  The 
goal of the Newport Bay TMDL is compliance with water contact recreational standards by 
2014: 

• Fecal coliform concentration of not less than five samples per 30 days shall have a 
geometric mean less than 200 MPN/100 ml, and not more than 10 percent of the samples 
shall exceed 400 MPN/100ml for any 30-day period.   

A second goal is to achieve the shellfish harvesting standards by 2020: 

• The monthly median fecal coliform concentration shall be less than 14 MPN/100 ml, and 
not more than 10 percent of the samples shall exceed 43 MPN/100 ml.   

The TMDLs are applicable for all flow regimes. 
 
Study Data Comparison with Fecal Coliform TMDLs – Table 5-26 shows the mean and median 
fecal coliform concentrations measured in the five study watersheds.  From 70 percent to 100 
percent of all fecal coliform measurements were greater than 400 MPN/ml in all study 
watersheds.  This level of exceedance is substantially greater than the allowable 10 percent.  The 
mean and median fecal coliform concentrations also exceed the 400 MPN/100ml criterion in all 
study watersheds.  There was insufficient data to calculate the 30-day geometric mean (a 
minimum of 5 samples per 30 days needed). However, the TMDL criterion (30-day geometric < 
200 MPN/100 ml) would likely be exceeded, assuming that any additional data would be of the 
same magnitude as those collected.  Exceedance of the TMDL criteria in all study watersheds 
suggests that urban dry weather runoff is likely a contributing factor to any dry weather 
exceedance of the TMDL in the receiving waters.   
 
 

 



 
 

  5-32 

 
Table 5-26  
Mean and Median Fecal Coliform Concentration (MPN/100ml) by Site 
 

 1001 1002 1003 1004 1005 
 Pre Post Pre Post Pre Post Pre Post Pre Post 
All Data           
 n 22 24 21 24 23 24 21 24 23 24 
 Mean 4921 3003 5582 128193 34526 28980 28205 34185 17976 10326 
 Median 2300 1400 1700 3000 13000 4000 13000 13000 8000 8000 
 % > 400 MPN/100ml 82% 67% 86% 79% 100% 88% 95% 83% 92% 93% 
Subsets1           
 n 17 14 17 14 18 14 17 14 18 14 
 Mean 2545 3054 3090 5074 13783 37479 23312 20166 8524 6109 
 Median 2200 950 1400 1400 8000 2650 8000 6500 4000 2900 
 % > 400 MPN/100ml 100% 71% 82% 79% 100% 86% 94% 79% 100% 93% 

1 – Data subsets with comparable sampling time and seasons.  Evening samples were deleted from the pre-
intervention data.  The post-intervention data include only those data collected in months identical to the pre-
intervention period. 

 
Dry weather coliform monitoring information in the Central Irvine Channel was not available.  
Therefore, it is unknown if elevated fecal coliform concentrations measured in the study 
watershed contribute to an exceedance of the TMDL in the immediate receiving waters.   The 
OCPFRD has collected dry and wet weather E. coli monitoring information in San Diego Creek 
at Campus Drive (OCPFRD, September 2001), which is considerably downstream from the 
study watersheds.  A plot of the equivalent fecal coliform concentration (assuming an 80 percent 
E. coli content) shows exceedance of the TMDL occurs primarily during the wet season, 
although dry season exceedances are also evident (see Figure 5-9).  This suggests that dry 
weather urban runoff is potentially a contributing factor to exceedance of the TMDL in dry 
weather flows at Campus Drive.  The ET controllers would reduce the impacts from these 
potential exceedances if they were determined to be effective in reducing the dry weather runoff 
volumes. 
 
Figure 5-9  
Time Series of Fecal Coliform Levels of San Diego Creek at Campus Drive (converted from measured E. coli 
concentrations) 

 
Median fecal coliform concentrations presented in Table 5-26 may be used to evaluate the 
influence of the structural and non-structural BMPs.  When all monitoring data sets are 
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considered, the median fecal coliform concentrations are equivalent or increase from pre- to 
post- intervention conditions in all sites except the 1001 (intervention site) and 1003 (a control 
site).  Based on the Mann-Whitney (rank-sum) test, the reduction in median concentrations at 
Site 1001 and 1003 is significant at the 95 percent confidence level.  Thus the site with the 
irrigation controllers corresponded to a significant reduction in median fecal coliform 
concentrations, in comparison to two of the three control sites, while the education only 
watershed exhibited no discernable reduction in median concentrations.   
 
When subsets of the data with similar seasons and sampling times are considered (Table 5-26), 
there is a decrease in the median fecal coliform concentration at all sites except 1002.  However, 
because of the smaller sample sizes, the decrease is median concentration is statistically 
significant only at Site 1003.  This suggests that there could be seasonal influences in the 
monitoring data, but the data is not sufficient to determine if there are statistically significant 
differences in the median concentrations.   
 
5.5 Conclusions  
 
The initial review of water quality data from the study found virtually no difference in 
concentrations or pollutant flux over time.  The technological and education treatments provided 
essentially no detectable increase or decrease in water quality following the intervention.   
 
The follow-up review utilizing more robust statistical methods on a sample of study data 
suggests that the interventions did result in changes in water quality.  TN levels in the retrofit 
neighborhood following intervention were found to be significantly lower than levels before 
intervention, whereas no detectable differences were noted before and after intervention in the 
education neighborhood.  Relatively large observed reductions in TN flux in the retrofit 
neighborhood could be influenced by seasonal factors, and the extent to which the ET controller 
contributed to the reduction is unknown.  Similarly, although reductions in TP flux were 
observed in the retrofit neighborhood, the effect of the ET controllers cannot be determined. 
  




